• 期刊首页
  • 学校概况
  • 期刊导读
  • 投稿须知
  • 邮箱投稿
  • 在线投稿
  • 联系我们

栏目导航

期刊介绍
学校概况
期刊导读
投稿须知
邮箱投稿
在线投稿

新闻

  • 市医学会举办第二届东方...
  • 线上线下互动科普 营造...
  • 走进航天精密机械研究所...
  • 聚焦月面,集同创新——...
  • 上海市微量元素学会召开...

通告

  • 关于2020年(全国)“最...
  • 关于举办2020年上海市“...
  • 关于贯彻落实中国科协服...
  • 关于开展上海市院士(专...
  • 关于组织推荐2020年“最...

您现在所在位置:首页 > 期刊导读 > 2014 > 01 > 信息摘要

基于特征加权的自动图像分类方法

【出 处】: 自动图像分类 特征加权 支持向量机

【作 者】: 王科平 ; 张志刚

【摘 要】低层特征的选择与提取是自动图像分类的基础,一方面,所选择的图像特征应能代表各种不同的图像属性,利于不同类别图像之间的区分;另一方面,为了提高后续模型的计算效率,需要减少噪声特征、冗余特征.提出了一种基于特征加权的自动图像分类方法.该方法根据图像低层特征分布的离散程度来衡量特征相对于类别的重要性,增加相关度高的特征的权重,降低相关度低的特征权重,从而避免后续模型被弱相关或不相关的特征所支配.所提的特征加权算法主要考察的是特征相对某个具体类别的重要程度,可以为每个类别选择出适合自身的特征权重.然后,将加权特征嵌入到支持向量机算法中用于自动图像分类,在Corel图像数据集上的实验结果表明,基于特征加权的自动图像分类算法可以有效地提高图像分类的准确性.

相关热词搜索:

上一篇:一种高效的电子政务系统的设计与应用
下一篇:多源数据融合技术在后备干部管理系统中的应用

版权所有©上海交通大学   沪ICP备05052060      
地址:上海市华山路1954号铸煅楼314室  邮政编码:200030